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BOUNDS  ON INTEGRALS WITH APPLICATIONS TO RELIABILITY PROBLEMS 

1.     Summary 

Certain statistical problems in life te sting and reliability 

lead to the consideration of minimizing and maximizing certain 

integrals of the form 

j    0 (x , F(x)) dx    F(x) = 1 - F{x] 
^0 

under the assumption that the distribution function F has in- 

creasing hazard rate and that one or two moments are given.  The 

minimizing (maximizing) distributions for the special cases con- 

sidered are members of the extremal class considered by A» Marshall 

and the author [1]0 Bounds on the expected values of the minimum 

and maximum order statistics as well as the operating characteris- 

tics of replacement policies based on age are obtained under these 

assumptions ■ 

2.  Statistical Motivation 

For many statistical problems in life testing and reliability 

it is natural to assume that the life distribution F (F(0 ) = 0) 

has increasing hazard rate Cls IHR)»  If F has density f , then F 

is  IHR if and only if  f(x)/[l - F(x)]  is nondecreasing in x . 

In general F is said to be  IHR if and only If ln[l - F(x)] is 

concave where finite. This property is enjoyed by most of the commonly 

used life distributions; e.g., 

. a-1   / . a,    ^ „ 
I Tvax   exp( -Ax )  x > 0 

Weibull;  f(x) =1 
^ o elsewhere 

\ 



for a ^ 1 , X > 0 , and 

,a a-1 

Gamma:  f(x) = 1  r(a) 
hji       expf-'Xx^   x ^ 0 

0 elsewhere 

for a ;> 1 , A > 0 .  Distributions F for which ln[l - F(x)3 

is convex on [0 , ») are called DHR fop  decreasing hazard 

rate. Properties of distributions with monotone hazard rate are 

discussed in [2]. 

In addition to this assumption, some prior information in 

2        2 
the form of the mean yu   ,  and the variance o    = Up - n.,  of the 

distribution may be known. Since in the IHR case 

H 

with equality only for exponential distribution, an estimate of 

the coefficient of variation a/p,, may represent the statistician's 

belief in the amount of departure of the failure distribution from 

exponentiality. 

With the mean and variance assumed known we consider the 

problem of minimizing and maximizing certain integrals of the form 

(2.1)    /  0 (x , F(x)) dx 
'0 

where F is IHR.  Integrals of such functions have been considered 

by Karlin [3], Rustagi [k]  and others for general distributions. 

(See O] for additional references). A related but more specialized 

problem is that of minimizing (maximizing) integrals of the form 

/  p(x) dF(x) 



assuming that certain moments of F are specified, (cf. (j.l) 

and Theorem 4.1).  Assuming no conditions other than the moment 

conditions, this problem has been solved by H. P. Mulholland and 

C. A. Rogers (1958). Their methods as well as those of many 

others (e.g. Karlin and Shapley (1953) use the fact that the 

class of all distributions subject to specified moment conditions 

are closed under convex combinations.  However, the class of IHR 

distributions is not closed under convex combinations [2, p. 381] 

and, therefore, we cannot use the classical methods.  Instead we 

consider very special cases using the methods of [1].  However, 

we do obtain fairly explicit bounds which can be easily machine 

computed. 

Integrals such as (2,l) often arise in statistical appli- 

cations.  For example, let U ^ Up <1 ^ U  denote n ordered 

observations from a population with IHR cdf F.  Let W = U - U 
n   n   1 

denote the sample range.  Then we may seek to minimize (maximize) 

E(Wn) -j "l - F(x)
n - (F(x))n] dx 

where F(x) = 1 - F(x) .  The integrand is of the form 0(x , y) 

where 

p(x , y) = 1 - (1 - y)n - y11 

is concave in y . 

For another example, consider a replacement policy of the 

form:  Replace at tÄfflS t or at failure, whichever occurs first. 

We may then seek to minimize (maximize) the following integrals: 

(i)  /  F(x) dx      F(x) = 1 - F(x) 

-5- 



i.e., the expected time 'between removals for either a failed or 

nonfailed item. 

t 

'0 
(ii)   /  F(x.) cU 

F(t) 

i.e., the expected time between failure removals using a replace- 

ment policy hased on t . The reciprocal of this quantity occurs 

as an upper bound on the renewal function divided by t , [5J« 

(iii)   /  F(x) dx 
^0  

F(t) 

i.e., the expected time between planned replacements using a re- 

placement policy based on t . 

A related expression is: 

(iv)  / F(x) ax/f(t) 
J+ ' 

I.e., the mean residual life of an item aged t . Bounds on densities 

and failure rate functions will be discussed in a future joint paper 

with A. Marshall. 

^. Bounds on Integrals when F is  IHR vith Specified Mean 

If 0(x , y)  is sufficiently smooth the problem of minimizing 

(maximizing) 

/ "'    - 
0(x , F(x)) dx 

J0 

is comparatively simple.  If F is  IHR with mean ^ and p(x) 

-k- 



is increasing (decreasing) then 

(5.1)  /   p(x) dx <; /  p(x)F(x)dx< /   p(x) e 1 dx 
J0 (^)J0 (^)^o 

This result is essentially due to Karlin and Novikoff and follows 

easily from their method of proof in [6].  Using (3.1) and the method 

of proof in Karlin [3] and Rustagi [h]  we obtain 

'- 
THEOREM 3.1:  If 

(i)   F is  IHR , F(0) = 0 , 

(ii)   /  x dF(x) = n  , 

then 

(iii)   0(x , y) is convex (concave) in y 

(iv)   g= 0(x ,   y)  is nonincreasing (nondecreaslng) in x , 

x 

S3(x , G (x)) dx > /  S3(x , F(x)) dx >  /  0(x , e  1) dx 
H (^)J0 (^-'o 

when the indicated integrals exist and where    G       is  the distribution 
^1 

degenerate at    1^   . 

PROOF:    We  show the lower bound,   assuming    ^(x  ,   y)     is  convex in    y 

and    "^ ^X '   y^     nonincreasing  in    x  .     Let    G   (x)  =  e'^^l    and 

define 

(5-2) 1(A)  =J       0   [x  ,   AGo(x)   +  (1-A) F(x)]   dx     for    O^A^ 1  . 

-5- 



Using (iii) it is easy to check that l(A)  is convex in >, •  If 

l(A) achieves its minimum at A = 1 then certainly Go(x) will 

minimize (2.1). This is possible if and only if 

i'OO U-i^0 

Now 

I,(x) 1^1 =J   h'9 [x' Go(x)][Go(x) ■F(x)] **• 

By (iv) . S- 0(x ., y)  is nonincreasing in x .  By assumption 

(iii) ^- 0(x , y) is nondecreasing in y .  But if we let 

y = G (x) , then 

■^ Y>\X. ,  y)  I y=Q ^x^ is nonincreasing in x . 

Therefore, by  (5.1) 

"^^   ,y)\ y=Go(x)
FW ^ 

x b    *, v |      G (x) dx 
. j0    ¥ ^ ' y) ' y=G0(x) ^ 

and hence    I'CX) j   <L 0  .    Therefore 

J00 _ /  00 — 
53   (x ,  F(x))  dx ^ /     0   (x  ,   G  (x))  dx  . 

Q «JQ 

If we assume 0 (x , y) is concave in y and ^r- 0 (x , y)  is 

nondecreasing in x , then all inequalities are reversed. 

The other inequalities follow in a similar manner. |j 

Of course an analogous theorem can be stated for DHR distributions. 

-6- 



Ißt    X^  ,  X ,...,  X      denote    n    independent observations on 

a random variable    X   with    IHR    distribution    F  .     Let 

ul ^ U2 1 •••  ^ u
n    denote "the associated order statistics.     Then 

E [Un _ Ul]  = j     (1   -   ^x)Jn  "   [1 " F(x)]n)   dx 

/   00 

= /       P   (x  ,   F(x))   dx 

lEL^-Uj^^^   i/k 

where    0  (x  ,   y)  = 1 -  y11 -   (l  -  y)n.     Since    0    is  concave in    y, 

Theorem J.l applies and we have 

n-1 

0 
^-    " n        1" -^ ""I 

k=l 

for sharp upper and lower bounds on the expected range.  Intuitively, 

this inequality tells us that observations on IHR random variable? 

tend to cluster together more closely than observations from an 

exponentially distributed random variable with the same mean.  In a 

similar manner we obtain sharp upper and lower bounds on the expected 

values of the minimum and the maximum observations. 

(3.2) -± £  EEUJ mj  Vex)]11 dx ^ ^ 

n 

(5.3) H-^EtUj mj      [1 - Fn(x)] dx^^^l/k 

1 

Note that 0 (x , y)=Q:xa"1[l - (1 - y)n]  satisfies the hypotheses 

of Theorem 3.1 for (2) (x , y) concave in y and |- 0(x , y) non- 

decreasing in x when a ^ 1.  Using this 0 we can bound all moments 

of U  .  Namely 

-7- 
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/ Zf-1   [1 - G^ (x)] dx i E[^] 

= / aif'h  1 - Fn(x)] dx ^ / ^"^[l - Gn(x)] dx. 
J<j J0 0 ' 

Inequalities (3.2) and (5.3) can ^e extended to include non- 

identically distributed random variables. The following proof is 

due to A. Marshall. 

THEOREM 3.2:  If F.(x) is IHR (DHR) with mean p,  and G (x) = e"X'^i 

(i ■ 1, 2,.,.,n) , then 

n 

(i)        /  ""ff F (x) dx^   1/)  l/n 

00 n /  "o n 

[1  - TfF  (x)]   dx^ 
b i=l (^)' 

(ü)     /   [1 - TTF.CX)] dx^ /   [1-TT »iU)] «x 
i=l    i (>)J0 i=l    1 

PROOF:    First we show  (i).    By (3-1) 

/     [ TTF^)    TT    Ö.(X)]  F   (X)  dx 
J0        j=l    J J-l+1    J 

1      I     tTT^Cx) TT    G.(x)]  G  (x)  dx 
(^)   J0      J=l     J       j=i+l     J 

for 1 ^ i ^ n  .     3y recursion we obtain 

00 B 

■JTf.{*)**> J   TTG (x) ax-vY J 
j=i   J (< Jo    j=i   J V pi 0      j=l    J (£)u0      j 



To show (ii). note that again by (j.l) 

(    00   1-1 

,   TrF-(x) TT-G.U) F (x) dx 
J0      j=l     J J=l+1  J. 

I   oo i-1 n _ 
i /    TT^W TT G.U) ö^X) dx 
(^)^O      J=l     J j=i+l  J 

which in turn implies 

/ V - TTF.CX) TTG^^)] ax 
J0 .1=1 J  3-1+1 J 

i .       n 
TT^Cx)' 
j=i  J    > 

(^)^O     j=l J   j-i  J 

(ii) follows by rec\irsion, || 

Part (i) tells us that the mean life of a series system 

with IHR components whose means are |i. (i=l, 2,...,  n) exceeds 

the mean life of a series system with exponentially distributed 

components and means \i±   (i-1, 2,..., a).  However, just the 

reverse is true for parallel systems. 

Additional properties of order statistics from IHR (DHR) 

distributions together' with applications to life testing will 

appear in a future report. 

k. .   Bounds on Integrals when F is  IHR with Specified Mean 

and Variance 

Assume now that F is  IHR with mean p_  and. p^ specified. 

In [1] the class of extremal distributions for bounding F were 

determined.  Two rather special members of this class are 

-9- 



exp (- a0x)   x < T1 

T1
V '  L 0 X ^ T2 

and 
1      X£l - ^M-2 " 1 = To 

1 - G_ (x) -.-j       -(x - T ) 
T0     L exp [       U  ] , x > T0 , 

^2 " 1 

where a  and T  are chosen to satisfy the moment conditions. 

With these distributions and different assumptions on p(x) we can 

improve the hounds in (j.l).  The method we now use has been em- 

ployed by Karlin and Novikofi [6] among others. 

THEOREM k.l    If 

(i)  F  is  IHR , F(0) = 0 

(ii) |x, = 1 and \x^    are specified 

(iii)  p(x) is convex (concave) 

then 

r08       - / 00      - 
/  p(x) G,. (x) dx ^ /  p(x) F(x) dx 

J0 ll (>)J0 

< p{x)-0 (x) dx . 

PROOF:  Assume p(x)  is convex.  We know [1] that F(x) - G  (x) 
  0 
has exactly two sign changes, say at x1 and Xg. F\irthermore, 

the order of the sign changes is - + - .  Define a line ü(x) so 

that 

p(x1) = ^(x1)  and p(x2) = i(x2) . 

-10- 



Since  p Is convex , p(x) - i(x)  changes sign at x  and x 

in the order + ~ + .  Therefore, 

[p(x) - i(x)][F(x) - Grr.(x)] ^ 0 

for all    x  .     Integrating on    x    we  obtain the upper bound' on 

» 
p(x)  F(x)  dx  . 

0 

The lower bound follows in a similar way using G  (x)  instead 

of G  (x) . 
0 

The ordering of sign changes for p(x) - £{x)     is of course 

reversed when p is concave. || 

Using Theorem k.l  and letting p(x) = x  for r > 0 , one can 

obtain improved bounds on |j, (r > 2) in terms of |i,  and p.-. 

The general problem of bounding integrals of the form 

/  0 (x , F(x)) dx 
J0 

when F  is  IHR with |j_  and \i      specified seems quite diffi- 

cult.  However, It is possible to treat many special cases using 

the properties of the extremal family considered in  [1] .  In 

order to do this we repeat some of the notation in [1].  We can 

assume without loss of generality that p, = 1.  It follows that 

[Op satisfies  1 <1 Mp^ 2.  Let 

T0 = 1 - ^\i2  -  1 and ^ - -äg log (l - a0) 

where a  in  [0 , 1]  and T  simultaneously satisfy the 

following equations: 

-II- 
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.  T, 

/       e'Vdx = ii,   = 1 
Jr. X 

T 
1 LL 

xe'V dx = g- 

Let 

^3 =iG
T   ■   ^1\) 

where 

1  - GT(x)    = ■a(x-A) 

x < A 

x^T 

and    a , A  (0 <; A ^ T0>    are  chosen to satisfy the moment  condi- 

tions;   i.e.. 

j      [1 - GT(x)]   dx = i^ = 1 

x[l  - GT(x)]   dx = ^    . 

Let 

47 4 - C0T ; T0 ^ T ^ TJ 

where 

r   -a^x e    1 

1  - GT0c) = 

x ^ T 

.e-aiT-a2   (X-T)       x^T 

TQ ^ T i Tl 

and    a^, ^ a      are  chosen to satisfy the moment  conditions  as 

.  -12- 



before.  It Is shewn in [1] that for t ^ 0 

inf [1 - GT(t)] ^ 1 - F(t) ^ sup' [1 - GT(t)] 

where the extremums are taken over ^ ^^L • These bounds have 

been tabulated for selected values of Mp (l ^ M-p ^ 2). 

4.1 Expected Time Between Removals.  If X has distribution F , 

then E[ min (X , t)] = 

t 

0 
/    F(x)  dx 

For an age replacement policy this denotes the expected tline be- 

tween removals using a policy determined by    t  . 

THEOREM 4.2.     If    F    is    IHR ,    F(0)  = 0    and    i^ = 1  ,   [Xg 

are  specified,  then 

(i) /     F(x)  dx      ^      inf    /     G   (x)  dx 
GTeh^ o 

(ii) F(x)  dx      <; 

T    4 

U-L » 1 

t ^ T0 =  1  - ^   - 1 

J     GT(x)  dx TQ i * i ^ 

***! 

All inequalities are  sharp. 

PROOF:     Let    F e T
1
 -  (^   U^, )    where    ■?    is the family of all 

IHR    distributions with  prescribed moments    p,    =  1    and    \x     . 

-13- 



Let T > T and s(T) be the crossing in (A , T) from above of 

1 - G by 1 - F . We use crucially the fact that s(T) is con- 

tinuous in T (see [1] p. 52). 

Case 1.  t <^ s(!r,) . From the definition of G     we can see that 
ll 

F(x) ^ G  (x)  for 0 ^ x ^ s(T ) 
1 ± 

and hence 

/ F(x) dx ^ / G  (x) dx 
J 0 

J 0  ■Ll 

Case 2.  t ^ s(oo) . F(x) crosses G^ (x) from above at s(oo) 

and 

F(x) i Gm (x) for x > ■(«•) 

Hence 

Joo i    00 
F(x) dx ^ / Grr (x) dx 

t J t    l0 

implies 

/ F(x) dx  ^ /  G  (x) dx . 

Case 3.  3(1,) < t < s(oo) .  Since s(T)  is continuous in T , 

choose T ^ T-j^ and A (0 <; A ^ tQ)    such that s(T) = t.  In 

this circumstance GT E'sÖ . A drawing will help. 

-1^- 



^U*) 

A1   x. s(T} = t     I f 

Let 

.0+(x) 
1  x ^ t 

0  x > t 

and define a line  l(x)  such that i^)  = 1 a.nd i(T) = 0 

Since clearly 

[0t(x) - X(x)][F(x) - GT(x)] ^0 

for all x , 

a   

[0t(x) - i(x)][F(x) - GT(x)] dx 

F(x) dx - /  G (x) dx 2 

This proves (l) • 

To prove (ii) we first note tha.t 

r(x) ^ G  (x) =1    for    0 ^ x ^ Tc 

and hence 

I     F(x) dx ^ t 
<J n 

for    t <. T 
0 ■' 

is sharp. 
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Also, 

F(x) ^ GT (x)    for x ^ ^ 

implies 

/  F(x) öx £        G  (x) dx = p., = 1 .   * ^ I-, 
J0 

J0   1 ± 

is sharp.  To complete the proof we need the function u(T) de- 

fined for T0 ^. T ^ T . Let u(T) be the crossing in [T , oo] 

from belcw of G  by F j u(T) always exists (see [1]). We 

use crucially the fact that u(T) varies continuously from 

u(T0) > T0 to u^) - ^ . 

Case 1.  t^u (T ) .  Clearly F(x) < G,,, (x) for x<u (T ) 
u ■      i0 J 

implies 

0 
f(x) dx ^ /  Gm (x) dx. 

Case 2.  T0 ^ ^(T ) < t < u(T. ) = T .  By continuity of u(T) 

we can choose T such that u(T) = t ,  In this circumstance 

G e'ö. •  The following drawing will help. 

1 V,    F(x) 

1 

^ GT(X) 
V  

0 xl uCT)  = t         x2 X 

If F(x) ^ G (x)  for x <^ t , the proof is obvious.  Hence 

suppose F(x)  crosses GT(x) from above at x  .  If x = » , 

-16- 



the proof is also obvious. Hence suppose x2 < «> . let 

r i      »i* 
izit(x) =  l 0    x > t 

and construct a line i(x) so that i(x1) = 1 and KXg) = 0 

Since 

[0 (x) - £(x)][F(x) - GT(x)] ^ 0 

for all x we have 

/ "^ (x) - -e(x)][F(x) - GT(x)] dx 

F(x) dx -J  GT(x) dx^ 0 . || 

Although, the above bounds must be computed numerically, they 

can be easily programmed because of the simple form of the 

extremal distributions. 

If M-! is the only moment specified (F IHR) , then 

/  F(x) dx ^ p. [1 - e    ] 

| t 

0 

t    t < ^ 
J  F(x)to<|^   t^Mi> 

All inequalities are sharp.  The lower bound follows from the 

fact that fix)     crosses e   ^ at most once and from above. 

The inequality is clear for small t .  If it were ever violated, 

then a fortiori it would also be violated for t - + «• which is 

impossible. 

-17- 



k.2    Mean Residual Life 

The mean residual life of ah-item aged t is. 

/ F(x) dxyf^t) . 

If F is IHR , this ratio is necessarily nonincreasing in t 

THEOREM 4.3:  If F is IHR , F(0) = 0 and \i    = 1 ,  [i      are 

specified then 

(1) jy^ dx ^ 
F(t) 

^-t 

inf l^T^ dx 
GT(t) 

t    ^T0 

To ^ t ^ Tl 

t > T. 

(ii) 

Ml«1 

/    F(x)  dx   ^ 
J t 

SUP        /       G  (x) dx 
GTe^

Jt      T 

F(t) GT(t) 

^ " 1 

t = 0 

0 < t < w 

t = + oo 

All inequalities are sharp. 

PROOF:  (i)  Case 1.  t^T  .  Since F(x) ^G  (x) for 
0 

0 ^ x ^ Tn    we see that 

/OO 1    oo 
F(x)  dx    ^   ./     G    (x)  dx = u    - t 

t J t     o ■'■ 

-18- 



is sharp and 

F(t) i GT  (t) = 1 

implies 

f  00- 
/  F(x) dx ^ ^ - t 

F(t) 

Case 2.  Tg ^ t ^ T, .  Define u(T) as in Theorem k.2   .     If 

J    F(x) dx ^ y F(x) dx ^    G (x) dx 
t  0 

F(t) G^ (*) 

If    u(T0) < t ^ u(T1)  = ^ ,   then choose    T    and    0    e^ö.      so 

that    GT(t)  ■ F(t)   .     This can be done since    u(T)    is  continuous 

in    T  .     By  (ii)    of Theorem    4.2    we have 

'     F(x)  dx    ^ Q  (x)  dx 
0 J 0    •L 

Hence 

P   00 00 

j     F(x)  dx    ^  j     GT(x)  dx 

F(t) GT(t) 

as  desired. 

Case _J.     t > T     .     We  can always  choose    T =  t    and    G    e $      so 
XT 

that 

-19- 



GT(x) = 0 for x > t and G^t) fO 

Hence 

/  F(x) dx 
J t  

F(t) 
kO 

for t > T  is sharp. 

(ii) Again we take cases. 

Case 1. t < s(T ).  The following drawing illustrates the 

situation. 

1 ^C ~ _   F(x) 

Clearly 

F(x) 4» 1 /  GT (x) dx 
t "t  1 

in this case and 

F(t) ^ G^ (t) 

implies 

F(x) dx ^ J  GT (x) dx 

F(t) 
1 

-20- 



Case 2. s(T ) < t ^ s(<») . By continuity of s(T) , there exists 

T ^ T and A such that s(T) = t and F(t) = GT(t) (0^ e^ ) . 

By case 3 (l) of Theorem k.2 

J    F(x) dx ^ J GT(x) dx 

implies 

J    F(x) dx ^ j  GT(x) dx . 

F(t) GT(t) 

Case 5. t >•(••) .  If t=s(oo), the following situation holds. 

- 
1 

^^                                           G 

1                    ~  ~ — 
0 To s(<») 

0-, (x) 
0 

Hence 

F(x) dx  <;  /  G (x) dx = -Jpl  -  1 
t ^ t  0 

F(t) GT (t) 
•Lo 

since 

Since 

F(t) = G  (t) at t = 3(00) 
0 

F(x) dx 

F(t) 

-21- 



is nonincreasing in t we have that 

/ f(x) dx ^ >J[i2 -  1 

F(t) 

for t ^ s(oo) is sharp . || 

It is easy to show that if only JL  is specified (F IHR) , 

then the following inequalities are sharp. 

r «L       r ^ " *  * ^ ^1 
Jt 

f (x) ^    ^ to t>Ml 
F(t) 

/ fix)  dx  ^ (x. . 
^ t      ■L 

F(t) 

4.3 Expected Time Between Failure Removals 

If an item is replaced either at age t or at failure, whichever 

occurs first, then the expected time between failure removals will be 

j 
t 
F(x) dx 

0  

This ratio is nonincreasing in t if F is IHR .  This ratio 

also occurs in a bound on the renewal function.  Suppose F is 

IHR and N(t) is the number of renewals in  [0 , t] for an 

associated renewal process.  Then it can be shown ([5], p. 8) that 

t 

0    ' "  i'i 
E[N(t)] ^ t F(t)/ /  F(x) dx < — 

-22- 



It is therefore of some interest to obtain bounds on this ratio. 

THEOREM k.h:     If F is IHR , F(0) = 0 and ji., = 1 , p.  are 

specified, then 

(i) F(x)  dx    ;> 

T(ty 

inf 

GTe ^5 

inf 

J     GT(x)   dx        t ^ ^ - 1 

-ö^ij 

GT(x)   dx      ^ ^ t  < ^ 

G^ItT 

t > T, 

(li) 
Jo 

F(x)  dx 

IW 

All inequalities are sharp. 

sup J o 
vn 
sup 

GT£^5 ^1 
GT(t) 

* <: T0 -1 - ^Mp ■■ I 

}T(X) dx    I0<.t 1 ^ 

GJT) 

t > T, 

PROOF (1) Case 1. t ^ s^ ) , then F(x) ^ G  (x)  for 0 < x. < 
11 

and 

t_ , t_ 
F(x) d*    ^ /  G  (x) dx, 

0 "01 
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implies the result. 

Case 2.  If »(E.) ^ t <£«{•») , then there exists T such that 

F(t) ■ 0_(t) where GT 6-Ä^- .  a?his follows from the continuity 

of s(T) .  Hence 

J     F(x) dx  ^  J  GT(x) dx 

TTty GT(t) 

by (i) of Theorem k.2.     Since necessarily s(oo) > n  , the first 

hound in (i) is immediate. 

Case g.  If t > s (oo) we use the function v(T) .  Let v(T) 

be the crossing in  (T , «)  from above of 1 - G  by 1 - F if 

such a crossing exists.  Otherwise let v(T) be the right-hand 

endpoint of the support of F .  Since v(T)  is continuous in T , 

choose T such that v^T) = t ; i.e., we have 

1 

"^ "-- 

"- - - - 
Ü T t = v(T)              x 

Since G (t) = F(t)  and clearly 

j F(x) dx  ^  /  G(x) dx 
t J t 

we have 

/  F(x) dx  Jj   /  G (x) dx 
J 0 «J 0 ■L 

IW ■Q^tT 
-2k- 



Case k.     t ^ T •  Since 

I    F(x) dx 
J 0  

is nonincreasing in t , we have 

/ F(x) 
t 

. dx 
0 

F(t)  ^ ^1 

for all t . For t > T,  this bound is attained by G  . U 
1 J-1 

(ii) Case 1.  If t < !„ , then F(t) ^ G (t) = 0 . Hence the 
u x0 

inequality is trivial in this case. 

Case 2.  t ^ u (T ) .   We use the continuity of u(T) again.  If 

t < u(Tn) , then F(t) £  G  (t) and 
U XQ 

/ fix)  dx  ^  / G (x) dx 

implies the result. 

Case j.  If u(l ) <^ t < u(T ) = T  , then there exists T such 

that G (t) = F(t) by continuity of u(l) .  Note GT e •# ^ . By 

Theorem 4.2 (ii) 

/  F(x) dx  <;  /  G (x) dx . 
«o     J o 

Fit]  GT(t') 

Case  k.     t > I-,   .     There exists    Gm e Ä.    corresponding to every    t 
 — - «•    X , T p 
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such ?(t) i GjCt) ; i.e., GT is the extremal distribution fur- 

nishing an upper bound on F(t) for t ^ T .  The following 

drawing will help. 

Since F(x) ;> G (x) = 0 for x > T we have 

J     F(x) äx      ^    J     GT(x) to , 

and F(t) ^ G (t) implies 

/ F(x) dx  ^ J\M  to  =  ^ 

TTTT 'ö^tY G^t) 

GT(t) is tabled for V^ = 1    and ^ (l i Mp 1 2) as the upper 

bound on F(t) for the case t ^ T . 

The asymptotic expected cost per unit time under an age replace- 

ment policy where an item is replaced either at failure or at time t 

whichever occurs first is  [cf. [7] p. 68] 

C(t)  =   (c1 - c2) F(t) + c£ 

f n x) dx 

(c1 ^. 
c
2) •  The methods of Theorem k.h will also provide sharp 

-26- 



bounds on this function. 

If onl^- ^ is specified, (F IHR), then the following 

inequalities are sharpT 

/ *- /     F(x)  dx      ^      ^ for all    t  , 

Fit) 

ft r - * 1H 
/     F(.x)   dx      ^      ^   n 

where    w    depends on    t    and is determined by 

t -wx   . 

The first inequality is attained by the exponential. The second 

inequality is attained by the degenerate and exponentials truncated 

on the right, 

h.k    Expected Time Between Planned Replacements 

If an item is replaced either at time t or at failure, which- 

ever occurs first, then the expected time between planned replace- 

ments will be 

/ F(x) dx 
J 0 

Fit) 

This ratio is always nondecreasing in t 
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THEOREM 4.5       If    F     is     IHR ,  F(O) = 0    and    |j= 1  ,  JJ.      are 

specified,    then 

/    F(x) dx    ^ 

F(t) 

0 ^ * 1 Tr 

/     G   (x)   cbc T    1 t ^ T. 
^3  0^»,    ^ 0 u 1 

5        4  
oT(t) 

inf 

inf / 
^3      J_0 

GT(x)  dx 

GT(t) 

t > T. 

/ F(X) dx < 
J_o  

F(t) 

sup 
^3     ''J o 

l\(x) dx 0 ^ t ^ T0 

GT(t) 

sup GT(x)  dx T0 < t ^ ^ 

GT(t) 

t > T, 

All inequalities are  sharp. 

PROOF:     Clearly    F(x).^F(t)     for    0^x£t    implies 

/     F(x)  dx    >    /     F(t)  dx 
J 0 ■       ^ o 

t F(t) 

for all    t > 0   .     For    t <; T-   ,   the lower bound is attained with    G 

-28- 



Now we consider cases, according as t < s(T ) or t > s(T ) 

where .(l^ denotes the crossing point.of GT (x) from above by 

F(x) .  . 1 

SHSJ:. fo ± * <L siTj   .     lit GT€^4 and let a^T) denote a 

solution parameter for T . [see preliminaries to this section] 

It can be shewn that    a^T) is a continuous function of T 

([1] P. 52).  Let w(T) denote the crossing of G  by F from 

above in  [0 , T]  if it exists.  Clearly w^) = s(T ) and 

0 1 w(a?) ^ 3(1^) . 

Continuity of a^T) together with log concavity of F(x) insures 

that for t satisfying T^t^s^) there exists T suchthat 

w(T) - t where GT e^ .  A drawing will help: 

Clearly we will have F(x) ^ GT(x) for x ^ t and hence 

L / t 
F(x) dx  ^ /  G_(x) dx . 

Fit) 

Case 2. 8(1.,) < t < 3(00), 

GT(t) 

Choose T and GT e ^ such that s(T) = t ; i.e., we will have 

-29- 



T x 

This  is possible by the continuity of    s(T)   .     Hence 

/ F(x) dx > / Ö_(x) 
J0 J0 

dx 

F(t) GT(t) 

by Theorem ^.2. Note that sC^) ^ ^ so that we need only 

consider G^ eij^    for t ^ ^ 

Case 3. t > s(oo) 

In this case F(x) ^ GT (x) for x ^ t and therefore 

/ F(x) dx ^ / G (x) dx 
J 0 J 0  0 

F(t) Gm (t) 'T 0 

To prove the upper bound we again take cases. 

Case 1. 0 ^ t ^ T0. We may suppose F(t) < 1 (0 ^ t ^ TQ) since 

otherwise 

/ F(x) dx 

= t 
F(t) 

and this value is realized by G  6«, .  Hence this is considered 

when we take supreraums over JQ j . We use crucially the continuity 

-30- 



crosses of r(T) where r(T) is the point in (A , T) that f 

GT from belcw if such a crossing exists.  Clearly r(T ) ^ T  : i.e. 

^ (x) 
T0^^V 

Consider now    0 ^ t ^ r(T0)   .     By continuity of    r(T)   (see  [Ij) 

we can choose    I    so that    r(T) = t  .     Then we have 

By definition of    r(T)   ,  F(x) ^ Q^x)     for    0 ^ x ^ t    and 

^t) = QT(t)    where    GT e^  .     Hence 

/     F(x)  dx      ^      /    ö_(x) 
0  ^0     1 

dx 

F(t) GT(t) 

52iSe_2.  T0 ^ t ^ ^ .  By case 1, we may assume t satisfies 

^V = U(V * t  £ ^  " \ •  By continuity of u(T)  choose 

T and GT e^ such that u(T) = t .  The following drawing 

will help; 

^•oF(x) 

GT(x) 
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By Case (3) of (ii) of Theorem k.2  we have F(t) ■ G^t) and 

/ F(x) dx      £      f    G (x) dx 

hence 

/  F(x) dx  ^  /  G (x) dx 
J 0 ^0 ■L 

F(t) GT(t) 

Case 3 .  t > T . In this case the upper bound is attained by 

GT (t); I.e., 

/  G  (x) dx  =  p. /0 = +00 

GT (t) Xl 

If the only moment specified Is the mean |i, (F IHR) , then the 

following inequalities are sharp. 

F(x) dx  ^ 

F(t) 

»iM! 

^ Jn 
Gw(x) ^    * > ^ 
G (t) 
w^ 

/ F(x) dx £ 

fw 
/„Vi sup /  OAxj dx    t < (j., 

A  JoJ 
GA(t) 

+ 00 

-32- 
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where 

^ 
x < T 

x ;> T 

w    and    T    are  chosen to satisfy 

<J n 

-wx  . e dx = |j. 

and 

oA(» ) - { - -^ - A 
A 

0 <^ x ^ A 

x ^ A 

(0 ^ A ^ p., )   .     The proof Is  similar to previous proofs and uses 

the methods of  [1] pp.   k^-hh. 

Acknovrledgment This paper represents an extension of part of a 
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